Controlling the Complexity of HMM Systems by Regularization
نویسندگان
چکیده
This paper introduces a method for regularization of HMM systems that avoids parameter overfitting caused by insufficient training data. Regularization is done by augmenting the EM training method by a penalty term that favors simple and smooth HMM systems. The penalty term is constructed as a mixture model of negative exponential distributions that is assumed to generate the state dependent emission probabilities of the HMMs. This new method is the successful transfer of a well known regularization approach in neural networks to the HMM domain and can be interpreted as a generalization of traditional state-tying for HMM systems. The effect of regularization is demonstrated for continuous speech recognition tasks by improving overfitted triphone models and by speaker adaptation with limited training data.
منابع مشابه
Soft state-tying for HMM-based speech recognition
This paper introduces a method for regularization of HMM systems that avoids parameteroverfitting causedby insufficient training data. Regularization is done by augmenting the EM training method by a penalty term that favors simple and smooth HMM systems. The penalty term is constructed as a mixture model of negative exponential distributions that is assumed to generate the state dependent emis...
متن کاملA New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
متن کاملMAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کاملEvaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کامل